dor_id: 41269

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la Revista Mexicana de Física se someten a un estricto proceso de revisión llevado a cabo por árbitros anónimos, independientes y especializados en todo el mundo.

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), Scientific Electronic Library Online (SciELO), SCOPUS, Web Of Science (WoS)

561.#.#.u: http://www.fciencias.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: info:eu-repo/semantics/article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://rmf.smf.mx/ojs/rmf/index

351.#.#.b: Revista Mexicana de Física

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: http://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://rmf.smf.mx/ojs/rmf/article/view/3401/3368

100.1.#.a: Mata Zamora, M. E.; Saniger, J. M.

524.#.#.a: Mata Zamora, M. E., et al. (2005). Thermal evolution of porous anodic aluminas: a comparative study. Revista Mexicana de Física; Vol 51, No 5: 502-0. Recuperado de https://repositorio.unam.mx/contenidos/41269

245.1.0.a: Thermal evolution of porous anodic aluminas: a comparative study

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Ciencias, UNAM

264.#.0.c: 2005

264.#.1.c: 2005-01-01

653.#.#.a: Anodic porous alumina; nanostructures; thermal analysis

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, fecha de asignación de la licencia 2005-01-01, para un uso diferente consultar al responsable jurídico del repositorio por medio de rmf@ciencias.unam.mx

884.#.#.k: https://rmf.smf.mx/ojs/rmf/article/view/3401

001.#.#.#: oai:ojs.rmf.smf.mx:article/3401

041.#.7.h: eng

520.3.#.a: The comparative study presented in this work concerning the thermal evolution of sulfuric, oxalic and phosphoric porous anodic aluminas, points out some differences among their physico-chemical and structural properties which were not previously reported. Empirical formulas calculated from the thermal analysis of all the anodic aluminas under study indicate that sulfuric aluminas have a significant higher content of dopant anionic species, oxygen excess, and hydroxyl groups than the oxalic and phosphoric aluminas, indicating that porous sulfuric anodic aluminas should have a higher structural disorder and hydrophilic character than its counterparts. For all samples, transition alumina phases are formed around 900\∘ C and \α -alumina above 1200\∘ C, but in these transformations sulfuric and oxalic aluminas follow a different evolution from phosphoric alumina. In the former case, the formation of transition aluminas occurs with the almost simultaneous thermal decomposition of sulfates and oxalates and finally a pure \α -Al 2 O 3phase is formed; while for the phosphoric alumina, the phosphate does not decompose even at 1400\∘ C, when a \α -Al 2 O 3phase unpurified with AlPO 4is observed. Infrared spectroscopy studies show that the coordination modes of the sulfuric and oxalic dopant species start to change well before their thermal decomposition, while, in the case of the phosphoric alumina, aluminum phosphate starts to form at the same time as the transition alumina phases.

773.1.#.t: Revista Mexicana de Física; Vol 51, No 5 (2005): 502-0

773.1.#.o: https://rmf.smf.mx/ojs/rmf/index

046.#.#.j: 2020-11-25 00:00:00.000000

022.#.#.a: 2683-2224 (digital); 0035-001X (impresa)

310.#.#.a: Bimestral

264.#.1.b: Sociedad Mexicana de Física, A.C.

758.#.#.1: https://rmf.smf.mx/ojs/rmf/index

handle: 008da248051a56de

harvesting_date: 2020-09-23 00:00:00.0

856.#.0.q: application/pdf

last_modified: 2020-11-27 00:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

_deleted_conflicts: 6-3a6f28c0f97d50e47b7ca9aa804a7241,2-d99b1664f5febfb6417d3a5a49ad253f

No entro en nada

No entro en nada 2

Artículo

Thermal evolution of porous anodic aluminas: a comparative study

Mata Zamora, M. E.; Saniger, J. M.

Facultad de Ciencias, UNAM, publicado en Revista Mexicana de Física, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Ciencias, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Mata Zamora, M. E., et al. (2005). Thermal evolution of porous anodic aluminas: a comparative study. Revista Mexicana de Física; Vol 51, No 5: 502-0. Recuperado de https://repositorio.unam.mx/contenidos/41269

Descripción del recurso

Autor(es)
Mata Zamora, M. E.; Saniger, J. M.
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Thermal evolution of porous anodic aluminas: a comparative study
Fecha
2005-01-01
Resumen
The comparative study presented in this work concerning the thermal evolution of sulfuric, oxalic and phosphoric porous anodic aluminas, points out some differences among their physico-chemical and structural properties which were not previously reported. Empirical formulas calculated from the thermal analysis of all the anodic aluminas under study indicate that sulfuric aluminas have a significant higher content of dopant anionic species, oxygen excess, and hydroxyl groups than the oxalic and phosphoric aluminas, indicating that porous sulfuric anodic aluminas should have a higher structural disorder and hydrophilic character than its counterparts. For all samples, transition alumina phases are formed around 900\∘ C and \α -alumina above 1200\∘ C, but in these transformations sulfuric and oxalic aluminas follow a different evolution from phosphoric alumina. In the former case, the formation of transition aluminas occurs with the almost simultaneous thermal decomposition of sulfates and oxalates and finally a pure \α -Al 2 O 3phase is formed; while for the phosphoric alumina, the phosphate does not decompose even at 1400\∘ C, when a \α -Al 2 O 3phase unpurified with AlPO 4is observed. Infrared spectroscopy studies show that the coordination modes of the sulfuric and oxalic dopant species start to change well before their thermal decomposition, while, in the case of the phosphoric alumina, aluminum phosphate starts to form at the same time as the transition alumina phases.
Tema
Anodic porous alumina; nanostructures; thermal analysis
Idioma
eng
ISSN
2683-2224 (digital); 0035-001X (impresa)

Enlaces